操作码(Operate Code,opcode)
编译与解释
编译器是把源程序的每一条语句都编译成机器语言,并保存成二进制文件,这样运行时计算机可以直接以机器语言来运行此程序,速度很快;而解释器则是只在执行程序时,才一条一条的解释成机器语言给计算机来执行,所以运行速度是不如编译后的程序运行的快的。
解释型语言的实现中,翻译器并不产生目标机器代码,而是产生易于执行的中间代码,这种中间代码与机器代码是不同的,中间代码的解释是由软件支持的,不能直接使用硬件,软件解释器通常会导致执行效率较低。用解释型语言编写的程序是由另一个可以理解中间代码的解释程序执行的。与编译程序不同的是,解释程序的任务是逐一将源程序的语句解释成可执行的机器指令,不需要将源程序翻译成目标代码后再执行。对于解释型Basic语言,需要一个专门的解释器解释执行
在很多时候我们成为编译,但是它实际是进行解释的
对于一个编译型程序,它的编译和执行是分开的,先编译成二进制可执行文件,然后在次执行。
对于PHP、Python属于解释型语言,不产生机器码,而是产生中间码(中间码是不能直接执行,这个中间码只有解释器可以识别到,中间码要靠解析器来进行执行)
比如说PHP的解析器是Zend,PHP使用Zend引擎,中间码我们也称作为操作码(opcode)
Basic程序,每条语言只有在执行才被翻译。这种解释型语言每执行一次就翻译一次,因而效率低下。
- 编辑:用编辑软件(EDIT.EXE或记事本)形成源程序(.ASM),如:LX.ASM;
- 汇编:用汇编程序(MASM.EXE)对源程序进行汇编,形成目标文件(.OBJ),格式如下:MASM LX.ASM;
- 连接:用连接程序(LINK.EXE)对目标程序进行连接,形成可执行文件(.EXE),格式如下:LINK LX.OBJ;
- 执行:如果结果在屏幕在显示,则直接执行可执行文件。
- 调试:用调试程序(DEBUG.EXE)对可执行文件进行调试,格式如下:DEBUG LX.EXE
鸟哥在博客中说,提高PHP 7性能的几个tips,第一条就是开启opache,引用下原文:
记得启用Zend Opcache,因为PHP7即使不启用Opcache速度也比PHP-5.6启用了Opcache快。
APC与Opcache都是字节码缓存也就是,PHP在被编译的时候,首先会把php代码转换为字节码,字节码然后被执行。
php文件第二次执行时,同样还是会重新转换为字节码,但是很多时候,文件内容几乎是一样的,比如静态HTML文件,生成后内容许久都不会改变,用户访问请求直接由服务器读取响应给客户端浏览器。都不用经过PHP进行解析构建了。
内存中的字节码(opcode)数据,可以直接缓存进行二次编译。这样程序就会快一些,cpu的消耗也少了。
什么是Opcode缓存
当解释器完成对脚本代码的分析后,便将它们生成可以直接运行的中间代码,也称为操作码(Operate Code,opcode)。Opcode cache的目地是避免重复编译,减少CPU和内存开销。如果动态内容的性能瓶颈不在于CPU和内存,而在于I/O操作,比如数据库查询带来的磁盘I/O开销,那么opcode cache的性能提升是非常有限的。但是既然opcode cache能带来CPU和内存开销的降低,这总归是好事。
现代操作码缓存器(Optimizer+,APC2.0+,其他)使用共享内存进行存储,并且可以直接从中执行文件,而不用在执行前“反序列化”代码。这将带来显着的性能加速,通常降低了整体服务器的内存消耗,而且很少有缺点。
为什么要使用Opcode缓存
这得从PHP代码的生命周期说起,请求PHP脚本时,会经过五个步骤,如下图所示:
Zend引擎必须从文件系统读取文件、扫描其词典和表达式、解析文件、创建要执行的计算机代码(称为Opcode),最后执行Opcode。每一次请求PHP脚本都会执行一遍以上步骤,如果PHP源代码没有变化,那么Opcode也不会变化,显然没有必要每次都重行生成Opcode,结合在Web中无所不在的缓存机制,我们可以把Opcode缓存下来,以后直接访问缓存的Opcode岂不是更快,启用Opcode缓存之后的流程图如下所示:
有哪些PHP Opcode缓存插件
Optimizer+(Optimizer+于2013年3月中旬改名为Opcache,PHP 5.5集成Opcache,其他的会不会消失?)、eAccelerator、xcache、APC …
PHP 5.5+版本以上的,可以使用PHP自带的opcache开启性能加速(默认是关闭的),PHP5.5之后opcache可以直接--enable-opcache
。
php.ini:
1 | [opcache] |
PHP Opcode原理
Opcode是一种PHP脚本编译后的中间语言,就像Java的ByteCode,或者.NET的MSL,举个例子,比如你写下了如下的PHP代码:
1 |
|
PHP执行这段代码会经过如下4个步骤(确切的来说,应该是PHP的语言引擎Zend):
- Scanning(Lexing) ,将PHP代码转换为语言片段(Tokens)
- Parsing, 将Tokens转换成简单而有意义的表达式
- Compilation, 将表达式编译成Opocdes
- Execution, 顺次执行Opcodes,每次一条,从而实现PHP脚本的功能。
题外话:现在有的Cache比如APC,可以使得PHP缓存住Opcodes,这样,每次有请求来临的时候,就不需要重复执行前面3步,从而能大幅的提高PHP的执行速度。
那什么是Lexing? 学过编译原理的同学都应该对编译原理中的词法分析步骤有所了解,Lex就是一个词法分析的依据表。 Zend/zend_language_scanner.c会根据Zend/zend_language_scanner.l(Lex文件),来输入的 PHP代码进行词法分析,从而得到一个一个的“词”,PHP4.2开始提供了一个函数叫token_get_all,这个函数就可以讲一段PHP代码 Scanning成Tokens;
如果用这个函数处理我们开头提到的PHP代码,将会得到如下结果:
1 | Array |
分析这个返回结果我们可以发现,源码中的字符串,字符,空格,都会原样返回。每个源代码中的字符,都会出现在相应的顺序处。而,其他的比如标签,操作符,语句,都会被转换成一个包含俩部分的Array: Token ID (也就是在Zend内部的改Token的对应码,比如,T_ECHO,T_STRING),和源码中的原来的内容。
接下来,就是Parsing阶段了,Parsing首先会丢弃Tokens Array中的多于的空格,然后将剩余的Tokens转换成一个一个的简单的表达式
- echo a constant string
- add two numbers together
- store the result of the prior expression to a variable
- echo a variable
然后就改Compilation阶段了,它会把Tokens编译成一个个op_array, 每个op_arrayd包含如下5个部分:
- Opcode数字的标识,指明了每个op_array的操作类型,比如add , echo
- 结果 存放Opcode结果
- 操作数1 给Opcode的操作数
- 操作数2
- 扩展值1个整形用来区别被重载的操作符
比如,我们的PHP代码会被Parsing成:
- ZEND_ECHO ‘Hello World’
- ZEND_ADD ~0 1 1
- ZEND_ASSIGN !0 ~0
- ZEND_ECHO !0
你可能会问了,我们的$a去那里了? 这个要介绍操作数了,每个操作数都是由以下俩个部分组成:
- op_type : 为IS_CONST, IS_TMP_VAR, IS_VAR, IS_UNUSED, or IS_CV
- u,一个联合体,根据op_type的不同,分别用不同的类型保存了这个操作数的值(const)或者左值(var)
而对于var来说,每个var也不一样
IS_TMP_VAR 顾名思义,这个是一个临时变量,保存一些op_array的结果,以便接下来的op_array使用,这种的操作数的u保存着一个指向变量表的一个句柄(整数),这种操作数一般用开头,比如0,表示变量表的0号未知的临时变量
IS_VAR 这种就是我们一般意义上的变量了,他们以$开头表示
IS_CV 表示ZE2.1/PHP5.1以后的编译器使用的一种cache机制,这种变量保存着被它引用的变量的地址,当一个变量第一次被引用的时候,就会被CV起来,以后对这个变量的引用就不需要再次去查找active符号表了,CV变量以!开头表示。
这么看来,我们的$a被优化成!0了。
详见鸟哥博客:PHP源码分析